
DirectNET PLC Access
Local application
Thu, Feb 1, 1996

The vacuum controls interface for the PET project uses a
Programmable Logic Controller to do the interlocks handling and vacuum-
specific logic that is required. The IRM interfaces to the PLC via an RS-232
serial port. The basic approach is to routinely collect analog and digital
data from the PLC, then map it into the IRM's analog and digital channels.
Control actions are also output as necessary. All of this logic is handled by
a local application.

The serial I/O input supported by the system system software passes
through the Serial Input Queue (SERIQ) table. By monitoring the contents of
the SERIQ, all received characters of serial input, except the linefeed (0A)
and null (00) characters can be seen. This is enough to catch the data
coming from the PLC.

The DirectNET protocol can transmit data in hex (binary) or in Ascii.
Although using Ascii requires twice the time for the data transfers, it helps
to unambiguously detect control characters that are part of the protocol.
This implementation of DirectNET support will use Ascii for that reason.
The following control codes are used by the DirectNET protocol:

ENQ 05 ETB 17
ACK 06 STX 02
NAK 15 ETX 03
SOH 01 EOT 04

DirectNET Overview

One data transaction requires a series of I/O communications
between the host computer and the slave PLC. To begin any transaction, the
master sends an inquiry 3-byte sequence of "N", "address", ENQ, where
address = $20 + the PLC slave address. The slave responds with the same
sequence, with the ENQ byte replaced by an ACK.

The master then sends a header that defines the operation. Its
format is SOH, header, ETB, LRC. The LRC stands for a one byte Longitudinal
Redundancy Check that is the exclusive OR of all the Ascii bytes within the
header. The header itself consists of the one-byte (two Ascii characters)
slave address, read (30) or write (38) character, data type character, two-
byte starting address, one-byte #complete (256-character) blocks, one-
byte number of bytes in last block, and one master ID byte (0 or 1). The
slave responds with an ACK character.

For a read request, the slave continues by sending the data message
in the format STX, data block, ETX, LRC. If the #characters in the data block is

DirectNET PLC Access p 2
than one data block is sent, with each complete data block using a ETB

character in place of the ETX. Each data word within a data block is in byte
order, least byte first. After each complete data block, or the last
incomplete data block (of length 0–255 characters) is received by the
master, the master returns an ACK. The slave then returns an EOT. The
master finally sends an EOT. This final EOT clears the slave for future
detection of an inquiry sequence.

For a write request, the transaction sequence is the same, but the
data is transferred from the master and ACK'd by the slave. After the last
data block is ACK'd by the slave, then the master sends an EOT to end the
entire transaction.

Timeouts are imposed on the successive communications of a
transaction. If a slave times out awaiting a response from a master, it will
be necessary for the master to send an EOT to clear the slave to accept a
new inquiry.

The details of this communication protocol are found in the manual.

IRM serial support

The usual serial port support in an IRM is organized around lines of
input separated by a CR character. Nulls (00) and LF characters (0A) are
removed from the input stream. If more than 128 characters are received
without a CR, then one is inserted into the serial stream. By operating the
DirectNET communications in Ascii mode, this should not cause a problem,
as LF and nulls and CR aren't used. The slave sends a CR in Ascii mode. But
a data block could be longer than 128 characters, so waiting for one would
not be advisable. Therefore, as a first step, we will simply monitor (at
10Hz) what is found inside the SERIQ and in this way be able to see all
characters in the stream as soon as they come in and are deposited into the
SERIQ by the serial receive interrupt code.

Serial output support is usually organized as lines, with trailing
blanks removed and CR and LF inserted. This is the usual way, but there is
a separate listype that permits serial output without such editing. We shall
use the latter listype for DirectNET output, in case the CR, LF would cause a
problem for the slave PLC. The serial baud rate for use with the DirectNET
interface is 19200 baud.

Data acquisition approach

The DNET local application program is used to collect the data
routinely by sending a read transaction. The response data consists of two
parts, the first for analog and the second for digital data. The response data

DirectNET PLC Access p 3
is then mapped into the IRM's local analog channels and digital bytes.
Between data acquisition transactions, DNET also monitors a message queue
for setting commends, either to an analog word or a digital word. When a
message is detected, a write transaction is made in place of the next data
acquisition transaction. This approach means that all the support afforded
analog channels and binary bits in the IRM system can be preserved. The
acquisition may be slow, but this is not thought to be a problem for a
vacuum system controls interface. With this approach, an update rate of
1Hz or better, and a control action delay of less than one second, should be
achievable.

In order to prevent other uses of the serial port for output, we may
place a flag bit in the PRNTQ header that prevents such output. A simple
way to do this may be to allow only the raw listype to work for serial
output. Usual serial port output uses the normal output logic that edits out
terminal blanks and adds CR,LF.

Message queue support

A change in the system code supports use of a PLCQ message queue.
When a setting is made to a PLC-type device, a message about the setting
is placed into the message queue. (If it has not been created, it will first be
created.) In this way, there is a place for the settings that result for the
Restore action following a system reset to reside, until the time that the
DNET local application is initialized and the first data acquisition transaction
completed. As DNET is initialized, it attaches to the PLCQ message queue so it
can check for any waiting messages.

Parameters

Local application DNET parameters, using example test values, are as
follows:

ENABLE B 00D4 Bit# enables local application
SLAVE 0001 Slave address of PLC interface
DATATYPE 0001 Data type# used for data pool acquisition
REFADDR 1001 Base reference addr for analog, digital data pool
NACHANS 0010 #chans of analog data
NDWORDS 0008 #words of digital data following analog data
MAPCHAN C 0180 Base analog Chan# for mapping to local IRM

space
MAPBIT B 0180 Base binary Bit# for mapping to local IRM space

0000 (spare)

DirectNET PLC Access p 4
0000 (spare)

The above set of parameter values supports 16 analog channels and
8 words (128 bits) of digital data.

Digital control scheme

Each BADDR entry is normally a memory address that should be
written for the associated status byte. But 1553 and SRM communications
required specially-coded 4-byte BADDR entries that are signaled by the use
of hi byte values 80 and 81, respectively. For the PLC support, we use a hi
byte value of 82. When the usual binary data scan occurs, via the "0405"
entry in the data access table, such entries are skipped. When a digital
control setting is made, the data type and reference address are found in
the lower three bytes of the BADDR entry. To perform the setting, the
information must be passed to the DNET local application via the message
queue scheme described above.

DNET collects the data pool from the PLC every 4 cycles. For support
by a local application that is invoked at 10 Hz, this is the easiest approach.
During the first cycle, the enquiry message is sent. On the second cycle, the
3-byte response to the enquiry is received, and the request header is sent.
On the third cycle, the acknowledgment to the request header is received,
followed by the data that was requested, and the ACK is sent. (If there is
too much data, given the bandwidth available, then an additional cycle or
more would be required.) On the fourth cycle, the EOT is received, and the
EOT is sent to the PLC to clear it for receipt of the next enquiry. The message
queue is checked for any settings to be performed. If one is found, then
another four cycles is spent doing that write transaction. The required data
type byte, reference address word, and data word are taken from the
message queue entry, which was filled by the setting support in the
system code using the contents of the BADDR entry. Upon completion of the
write transaction, a new read transaction is performed that updates the
data pool. As a result, the data pool is updated every 0.4 seconds, but
when a setting must be performed, 0.4 seconds is taken to perform it. The
maximum time between updates of the data pool is therefore 0.8 seconds.
The maximum time to perform a setting, assuming none is already queued,
is also 0.8 seconds. If a faster update rate is needed, a means of invoking
the local application in response to serial activity will be required. At first,
omitting such support is easier.

DirectNET PLC Access p 5
Bit-based, byte-based, and word-based digital control are supported.

In any case, however, a word-wide setting is actually performed. Bit-based
toggle, set hi, and set lo digital control types are supported. Bit-based pulse
types are not supported for this hardware; the PLC's cpu logic can be used
to do it.

Analog control

Analog control is specified by a new analog control type# $19. The
second byte gives the data type, and the last two bytes give the reference
addresss to be used to effect the setting. It may be in the memory region
that is part of the data pool, in which case the PLC's cpu will have to
perform the setting to the real I/O module; or it may be in the I/O module
itself. Upon successfully queuing the setting message, the setting word of
the ADATA entry for that channel is updated, even though completely
successful completion of the setting is not assured. Because knob control
could queue settings faster than they can be delivered at 0.8 sec, the local
application checks for successive entries in the queue referencing the same
target address (data type and reference address), and coalesces them as
much as possible, delivering only the final setting it finds waiting in the
queue.

